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A B S T R A C T  

Let T be the family of open subsets of a topological space (not necessarily 
Hausdorff or even To). We prove that if T has a countable base and is 
not countable, then T has cardinality at least continuum. 

Topological spaces are not assumed to be Hausdorff, or even To. 

THEOREM 1: Let T be the set of open subsets o[a topological space, aJ~d suppose 

that T has a countable base B (more precisely, B is a countable subset o f T  which 

is dosed under finite intersections, and the sets in T are the unions of subsets of 

B).  Then the cardinality of T is either 2 ~° or _< R0. 

This answers a question of Kishor Kale. We thank Wilfrid Hodges for telling 

us the question and for writing up the proof from notes. In a subsequent work [2] 

we shall deal with the case A _< JB I < 2 x, ITI > IBI, A strong limit of cofinality 

R0 and prove that  JT I >_ 2 "x. 
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The proof of Theorem 1 shows that if IT[ > n0, then for some countable set 

Y of points, {U t3 Y : U open} has the cardinality of the continuum. In fact we 

can find one of a few "basic behaviours", most notably we can find points z~ for 

v E '~>2 such that for every t/E '~2 for some open set U~ we have z~ E U~ ¢* v,~77 

(see [2]). 

Our proof begins with some notation. A set fl is given, together with a count- 

able family B of subsets of f~; f / =  U B and B is dosed under finite intersections. 

We write T for the set of all unions of subsets of B. Thus T is a topology on ft 

and B is a base for this topology. 

We write X, Y etc. for subsets of ft. We write T ( X )  for the set { X A Y  : Y E T}, 

and likewise B ( X )  with B in place of T. We say X is smal l  if IT(X)I < ~,, and 

large otherwise. 

LEMMA 2: Xflnl = ~0 and ITI > R0 then ITI  = 2 ~°. 

Proof." Identify fl with the ordinal ~, and list the set B by a function p with 

domain w, so tha t /3  = {p(m) : m < ~}. Then a set X is in T if and only if 

(3Y _c ~)(v,-, e ,,.,) (~ • x ~ 3m(m e r ^ ,, • p(~))) .  

Thus T is an analytic set, and so its cardinality must be either 2 ~° or < R0 

(cf. Mansfield and Weitkamp [1] Theorem 6.3). c32 

LEMMA 3: Suppose ~ is linearly ordered by some ordering "4 in such a way that 

the sets in T are initial segments of f~ and any initial segment of the form (-oo,  z) 

is open. g ITI > n0 then ITI = 2 ~°. 

Proof." Suppose on the contrary that z0 < [TI < 2 ~°. As B is countable, the 

linear order has a countable dense subset D, but as IT[ < 2 ~ ,  the rationals 

are not embeddable in D, i.e. D is scattered. By Hausdorff's structure theorem 

for scattered linear orderings, D has at most countably many initial segments 

(cf. Mansfield and Weitkamp [1] Theorem 9.21), a contradiction. Ds 

Henceforth we assume that ~2 is uncountable and large, and that [T[ < 2 ~°, 

and we aim for a contradiction. Replacing fl by a suitable subset if necessary, 

we can also assume: 

HYPOTHESIS: The cardinality o£ fl is ~1. 

Finally we can assume without loss that if x, y are any two distinct elements 

of f / t h e n  there is a set in B which contains one but not the other. (Define z 
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and y to be e q u i v a l e n t  if they lie in exactly the same sets in B. Choose one 

representative of each equivalence class.) 

LEMMA 4: I f  for each n < w, X,~ is a small subset of f~, then ~J,~<,~ X,~ is small. 

Proof: Each X ,  has a countable subset Yn such that if V, W are elements of T 

with V n X ,  ~ W n Xn then there is some element y E Y,~ which is in exactly 

one of V, W. Now if V, W are elements of T which differ on [.J,<~ X,,, then they 

already differ on some X ,  and hence they differ on Y = (J,~<~ Y,~. But Y is 

countable; so Lemma 2 implies that  either Y is small or IT(Y)] = 2 ~0. The latter 

is impossible since IT I < 2 a°, and so Y is small, hence [.J,,<~ Xn is small. Q4 

Our main argument lies in the next lemma, which needs some further notation. 

Let Z be a subset of i2. The Z -c lo su re  of a subset X of Z is the set c lz (X)  of 

all elements y of Z such that  every set in B which contains y meets X. Given 

an element x of Z and a subset X of Z, we write b a c k z ( x , X )  for the set 

{y e z :  y ¢ x u 

LEMMA 5: Suppose Z is a large subset of ft. Then there are aJ~ element x of Z 

and a set X E B such that x E X and backz(x,  X )  is large. 

Proof: Assume Z is a counterexample; we shall reach a contradiction. By a 

Z - r i ch  se t  we mean a subset N of Z U to(Z) such that  

• N is countable. 

• If x E N and X E B then b a c k z ( x , X )  E N. 

• If U is a subset of Z which is a member  of N and is small, and V~ W are 

elements of T such that  V n U ~ W n U, then there is some element of 

N N U which lies in exactly one of V and W. 

Since Z has cardinality at most wl (hence by Lemma 2 equal to wl ), we can 

construct a strictly increasing continuous chain (Ni : i < w l / o f  Z-rich sets, such 

that  Z C [.Ji<,~, Ni. 

Let us say that  an element x of Z is p e r t i n e n t  if there is some i < wl such 

that  x E Ni+l \ Ni, and x lies in some small subset of Z which is in Ni. If z is 

not pertinent, we say it is i m p e r t i n e n t .  

We claim that  if V, W are any two distinct members  of T (Z )  then some imper- 

tinent element is in exactly one of V and W. For this, consider the least i < wl 
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such that some element z of Ni+i \ Ni is in the symmetric difference of V and 

W. If z is pertinent, then by the last clause in the definition of Z-rich sets, some 

element of Ni already distinguishes V and W, contradicting the choice of i. This 

proves the claim. 

Now let I be the set of all impertinent elements of Z. Since Z is large, the 

previous claim implies that I is large. Thinning the chain if necessary, we can 

arrange that for each i < wl, Ni+l \ Ni contains infinitely many elements of I.  

We can partit ion I into countably mmly sets, so that for every i < wl, each 

set meets I N (Ni+l \ Ni) in exactly one element. By Lemma 4 above, since I is 

large, at least one of these partition sets must be large. Let J be a large partit ion 

set. We define a binary relation -< on J by: 

x ' < y  ¢# for a l l U E B ,  i f y E U t h e n x E U .  

We shall reach a contradiction with Lemma 3 by showing that -< is a linear 

ordering and T(J)  is a set of initial segments of J under _-< which contains all the 

initial segments of the form {x : x ~ y}. 

The relation _ is clearly reflexive and transitive. We made it antisymmetric 

by assuming that no two distinct elements of ~ lie in exactly the same sets in B. 

We must show that if x and y are distinct elements of Z then either x _ y or 

y-<x. 

Let x, y be a counterexmnple, so that there are sets X, Y E B with x E X \ Y 

and y E Y \ X. By symmetry and the choice of J we can assume that for some 

i < wl, x E Ni and y E Ni+l \ Ni. Since y is impertinent, no small set containing 

y is in Ni. In particular backz(x,  X) contains y and hence is not both small and 

in Ni. But since Ni is Z-rich, it contains backz(x, X).  Also we assumed that Z 

is a counterexample to the lemma; this implies that backz(x,X) is small. We 

have a contradiction. 

Thus it follows that _-< is a linear ordering of J ,  and the definition of _-< then 

implies that T(J)  is a set of initial segments of _. As B separates points, every 

set {x : x -< y} is open. This contradicts Lemma 3 and so proves the present 

lemma. D5 

P roo /  o /  Theorem 1: Now we can finish the proof of the theorem. We shall find 

elements xn of ft and sets X .  E T (n < w) such that x,,, E X ,  if and only if 

rn = n. By taking arbitrary unions of the sets X,, it clearly follows that IT I = 2 w. 
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We define xn and X,, by induction on n. Writing Z-1 for fl and Z,, for 

backz._ , (x , , ,X.) ,  we require that z,,+l E Z,, and each set Z .  is large. Since 

fl is large, Lemma 5 tells us that we can begin by choosing x0 mad X0 so that 

backf~(x0, X0) is large. 

After x,, and X,, have been chosen, we use Lemma 5 again to choose x,,+l in 

Z,, and Y,,+I in B so that x,,+l E Y,,+I and backz.(x,,+~, Y.+I) is large. For each 

m _< n, z,,+l is in Zm and hence it is not in clz.,_~ {x,.}, so that there is some 

set U,,, E B which contains z,,+l but not z,,,. Put X,,+I = ~, .<, ,  U,. n Y,,+I. 

(Note that this is the one place where we use the fact that B, and hence also T, 

is closed under finite intersections.) Since X.+1 C_ Y,,+1, backz . (z .+ l ,  X.+1) is 

large. 

We must show that this works. First, x .  E X .  for each n by construction. 

Next, if m < n then x,,+l is in Zm mid hence it is not in X,,,. Finally if m < n 

then Xm q[ X,,+I by the definition of X,,+I. t31 

The following theorem has a sinfilar proof. We omit details, except to say that 

(i) "countable" is replaced by "of cardinality at nmst [B[", and w~ by [B[ +, and 

(ii) a more complicated analogue of Lemma 2 is needed. 

THEOREM 6: Let T be the set of open subsets of a topological space ~ (not 

neccessarily Hausdorff, nor even To), and suppose that T has a base B which is 

dosed under finite intersections, and ITI > IBI + Ro. Then 

(1) there are z,. £ fl mad X .  E B for n < w sud2 that for edl m , n  < w, 

x .  E Xm if[ m = n, and 

(2) ITI _> 2 ~°. 

One naturally asks whether we can let B in Theorem I be any set such that T 

is the set of unions of sets in B, without the requirement that B is closed under 

finite intersections. The mlswer is no, for the following reason. 

LEMMA 7: Suppose there is a tree S with ~ levels, IL nodes and exactly A branches 

of length ~, where A >_ I~; suppose also that S is normal (i.e. at each limit level 

there are never two or more nodes with the same predecessors). Then there are a 

set fl of cardinality A and a family of p subsets off~ which has exactly A unions. 

CONSTRUCTION: Let fl be a set of A branches of length 6; for each s £ S let Us 

be {x E fl : s ~ z}.  Lastly let B be the family of sets {Uo : s E S} ,  so that 
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IB[ = ft. Now the sets in T are: members of B,  ~ itself az~d complements of 

singletons; so IT[ = A. D7 

Thus by starting with the full binary tree of height ~v, we can build examples 

where B is countable and T is any cardinal between w and 2". 
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